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Abstract

Finite difference approximations of the second derivative in space appearing in, parabolic, incompletely parabolic
systems of, and 2nd-order hyperbolic, partial differential equations are considered. If the solution is pointwise bounded,
we prove that finite difference approximations of those classes of equations can be closed with two orders less accuracy
at the boundary without reducing the global order of accuracy.

This result is generalised to initial-boundary value problems with an mth-order principal part. Then, the boundary
accuracy can be lowered m orders.

Further, it is shown that schemes using summation-by-parts operators that approximate second derivatives are
pointwise bounded. Linear and nonlinear computations, including the two-dimensional Navier–Stokes equations,
corroborate the theoretical results.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For computations of numerical solutions to an initial-boundary value problems, it is commonly known that
one order less accuracy at the boundary is allowed. This stems from two articles by Gustafsson [1,2], and refers
to the order of accuracy of the numerical boundary conditions. The physical boundary conditions have to be
approximated to the global order of accuracy. Also, in [2] it was shown that two orders is recovered at the
boundary for parabolic problems, if Dirichlet boundary conditions are used and a number of algebraic
conditions are satisfied.
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Abarbanel et al. showed in [3] that 1.5 orders of accuracy can be recovered theoretically at the boundary for
parabolic problems with general boundary conditions. They present computations where two orders of accu-
racy is recovered, indicating that their theoretical estimate is not sharp.

In [4] Mattsson and Nordström suggested that for parabolic problems as well as incompletely parabolic
problems, the numerical boundary conditions (or numerical closure) can be approximated with two orders less
accuracy for parabolic terms. Further, the physical boundary conditions are allowed to be approximated with
one order less accuracy when the boundary conditions are weakly implemented. These conclusions are sup-
ported with extensive numerical experiments and an analysis giving conditions for the hypothesis to be true.
However, the conditions derived are algebraically difficult to evaluate for the actual numerical scheme.

In this article, we consider parabolic, as well as incompletely parabolic systems of partial differential equa-
tions with general boundary conditions. We prove that two orders less accuracy is allowed for the approxima-
tion of second derivatives at the boundary, if the scheme yields a pointwise bounded solution. It is also proven
that the results carry over to discretisations of 2nd-order hyperbolic equations, such as the wave equation.

The theory is also taken one step further by considering equations with an mth-order principal part. Then the
order of accuracy for numerical boundary conditions can be lowered m orders if the scheme is pointwise stable.

The article is organised as follows: in Section 2, accuracy theorems are proven under specific stability
assumptions; Section 3 proves that the theorems are applicable to summation-by-parts operators (SBP oper-
ators) with the simultaneous approximation term technique (SAT) approximating the boundary conditions; in
Section 4 computations that corroborate the theoretical results are presented.

2. Analysis

The focus in this paper will be discretisations near the boundary. To simplify the notation we consider
semi-infinite problems in space. This is no restriction since well-posedness on a bounded domain follows
from well-posedness of the Cauchy problem and two half-plane problems (see [5]).

2.1. The advection–diffusion equation

Consider the parabolic equation,
ut þ aux ¼ �uxx þ F ðx; tÞ; 0 6 x 61; t P t0;

uð0; tÞ þ auxð0; tÞ ¼ gðtÞ; juj ! 0; x!1;
uðx; t0Þ ¼ f ðxÞ;

ð1Þ
where � > 0; f is the initial data; g is the boundary data and F is the forcing function. (We assume that juj decay
sufficiently fast to make iui bounded with a well-posed boundary condition at x = 0. i Æ i denotes an appro-
priate norm.) Note that, with a > 0, the energy method applied to (1) leads to a non-growing energy for
the homogeneous problem if �2�

a 6 a 6 0 and hence well-posedness.
A general semi-discretisation of (1), with grid spacing h, would be
vt ¼ Mhvþ Bh; vð0Þ ¼ f ; ð2Þ
where Mh is the part of the discretisation operator multiplying the unknowns and Bh is a vector that includes
the boundary data and the forcing function. Further, v is the vector function approximating the solution of (1)
and f is the vector function identical to f(x) at the grid points. Note that, the general formulation (2) covers
both the case when the boundary conditions are exactly enforced (strong imposition) or weakly imposed as a
penalty term.

Next, we define and discuss a few notions that frequently will be used. Let i Æ ih denote the l2-norm, i.e.
kvk2

h ¼ hvTv. In [5] the following definition is given.

Definition 2.1. The approximation, v, is strongly stable if, for all h 6 h0, the estimate
kvðtÞk2
h 6 KðtÞðkf k2

h þmax
06s6t
kF ðsÞk2

h þmax
06s6t

gðsÞ2Þ ð3Þ
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holds. Here K(t) is a bounded function in any finite time interval and does not depend on the data. The
approximation is stable if (3) holds with g(t) = 0.

With the norm ivi1 = supijvij we modify the previous definition.

Definition 2.2. The approximation, v, is strongly pointwise stable if, for all h 6 h0, the estimate
kvðtÞk2
1 6 KðtÞ kf k2 þmax

06s6t
kF ðsÞk2 þmax

06s6t
gðsÞ2

� �
ð4Þ
holds. Here K(t) is a bounded function in any finite time interval and does not depend on the data. (iÆi denotes
some norm.) The approximation is pointwise stable if (4) holds with g(t) = 0.

We also define the space l1 as the space of all grid functions f with the property that i f i1 is bounded.

Lemma 2.3. Assume that F, f and g are smooth such that the solution u of (1) is smooth. Let v denote the solution

to the consistent discretisation (2) of (1) with grid spacing h. Let uh denote the projection of the exact solution

onto the grid. If v is pointwise stable, for all h 6 h0, v converges to uh uniformly.

Proof. Insert uh into (2) to obtain, (uh)t = Mhuh + Bh + Th with uh(0) = f where Th denotes the truncation
error vector. Using (2) we obtain, (uh � v)t = Mh(uh � v) + Th, with (uh � v)(0) = 0. Since the scheme is point-
wise stable we have the estimate, kuh � vk2

1 6 KðtÞðsup06s6tkT hðsÞk2
1Þ. By consistency and smoothness of u,

kT hðsÞk2
1 ! 0 as h! 0. Thus, we have uniform convergence. h

Lemma 2.4. Assume that v is stable in some norm (not necessarily the l2-norm), i.e. the estimate (3) holds when

g = 0 for a specific norm. Then v is uniquely defined in that norm.

Proof. Assume that there exist two solutions w and v to Eq. (2). By linearity we have the error equation,
(v � w)t = Mh(v � w), with (v � w)(0) = 0 and the bound iv � wi 6 0 for h 6 h0 follows. h

Lemma 2.5. If v is bounded in l1, then v converges uniformly and uniquely to u, in the sense of iuh � vi1! 0 as

h! 0.

Proof. Lemmas 2.3 and 2.4. h

To analyse the order of accuracy we shift our focus to consider the error equation by subtracting the true
solution, u(x, t) from v, i.e. e = v � uh. Using either a strong or weak approximation of the boundary condi-
tions we would arrive at,
et ¼ Mheþ T h; eð0Þ ¼ 0. ð5Þ

As before, Th denotes the truncation error and generally we have, T ¼ ðOðhrÞ; . . . ;OðhrÞ;Oðh2pÞ; . . . ÞT,
where h denotes the grid spacing. To describe the size and structure of Th, we will use T h ¼ Oðhr; h2pÞ
for boundary and interior points, respectively. If (2) is stable and r = 2p we immediately obtain the desired
order of accuracy 2p of the scheme by applying the energy method (see proof of Lemma 2.3, where the
norm may be different from the supremum norm). However, we will consider r < 2p. The first theorem
below states that two orders less accuracy is allowed on the boundary in the purely parabolic case,
a = 0.

Theorem 2.6. If v is a pointwise stable discretisation of (2) for h 6 h0 and a = 0, then with r = 2p � 2, the global

order of accuracy of the approximation (2) is 2p.

Proof. We split the truncation error into a boundary and internal part, such that T = Ti + Tb where

T b ¼ ðOðhrÞ; . . . ;OðhrÞ; 0; . . . ÞT ¼ Oðhr; 0Þ and T i ¼ ð0; . . . ; 0;Oðh2pÞ; . . . ÞT ¼ Oð0; h2pÞ. Similarly, the error is
split into e = ei + eb. Note that ei and eb are both nonzero everywhere since there is in general a strong cou-
pling between the boundaries and the interior. By the boundedness in l1 of v, and since ei is discretised with
the same scheme as v,ei satisfies the same estimate, such that,
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keiðtÞk1 6 KðtÞkT iðtÞk1 6 Oðh2pÞ. ð6Þ

Next, we turn to the boundary part. Laplace transform (5) and consider only errors coming from the discret-
isation at the boundary, sêb ¼ Mhêb þ bT b; Res P 0.

In the purely parabolic case all the entries of M are proportional to 1/h2. Thus, we multiply by h2 such that
~M ¼ h2Mh to make every nonzero entry of ~M of order Oð1Þ. With ~s ¼ sh2 we obtain,
~sêb ¼ ~Mêb þ h2 ~T b; Re~s P 0. ð7Þ

Note that, the scheme is the same at every point except at points near the boundary. We consider (7) to be a
homogeneous difference equation where h2 ~T b is its initial data. We write the solution to (7) as,
ðêbÞj ¼
X2p

l¼1

rlj
j
l. ð8Þ
Assume without loss of generality that the interior scheme is 2p = k + q + 1 points wide. Since ð~T bÞj ¼ 0 at an
interior point j we have,
~sðêbÞj ¼
Xq

i¼�k

aiðêbÞiþj; ð9Þ
where ai are constants. Inserting the ansatz (8) into (9) yields the characteristic equation,
~sjj ¼
Xq

i¼�k

aij
iþj; ð10Þ
which has solutions jlð~sÞ for l = 1..2p. Denote by j1, . . .,jm the roots with jjij 6 1 for i = 1..m. The remaining
roots are discarded due to boundedness of the solution. That is rm + 1 =� � �= r2p = 0. Hence, the solution
reads, ðêbÞj ¼

Pm
l¼1rlj

j
l.

The constants rl, l = 1..m are determined by the scheme near the boundary. Assume that we have m + 1
boundary points (discretised with a boundary scheme). If m + 1 > m we may have additional modes near the
boundary. For j = 0, . . .,m we write the solution as, ðêbÞj ¼

Pm
l¼1rlj

j
l þ
Pmþ1�m

l¼1 sl/
j
l.

Define r = (r1, . . .,rm,s1, . . .,s1, . . . sm + 1�m)T such that, �jr ¼ êrb, where êrb now denotes the restriction of êb

to the m + 1 boundary points and,
�j ¼

j0
1 . . . j0

m /0
1 . . . /0

mþ1�m

..

. ..
. ..

. ..
.

jm
1 . . . jm

m /m
1 . . . /m

mþ1�m

0BB@
1CCA. ð11Þ
Since the /i:s do not continue into the domain we choose them such that each column in �j is linearly inde-
pendent. We will use �j to determine r which is why we exclude the interior points since (7) is already fulfilled
at the interior points by the jl:s, independent of r. Let Ir denote the (m + 1) · (m + 1) identity matrix. At the
m + 1 boundary points where the interior scheme is altered we obtain, ð~sI r � ~M rÞ�jr ¼ h2 ~T rb, where Mr and ~T rb

denotes the restrictions to the (m + 1) boundary points. To estimate r we note again that ~M r is a matrix with
coefficients independent of h and ~s. We have,
ð~s�j� ~M r�jÞr ¼ h2 ~T rb; ð12Þ

where the coefficients of R ¼ ð~s�j� ~M�jÞ are independent of h. Thus if a unique solution to (12) exists, r would
be of order h2 ~T rb, i.e. we would gain two orders of accuracy at the boundary. Then by Parseval’s relation we
can transform back to e to conclude that the desired order of accuracy is obtained. We need to prove that (12)
has a solution for all Re~s P 0.

By well-posedness, the exact continuous solution is unique. From pointwise stability of the numerical
scheme and Lemma 2.5, v converges uniquely and pointwise to u. The same properties carries over to e and ei

and they will converge uniquely and pointwise to 0. Hence, eb = e � ei is unique.
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Suppose r is not uniquely determined by (12) then êb would not be unique. However, since e and ei are
bounded, êb has to be bounded and the inverse Laplace transform could be performed and yield a non-unique
eb. A contradiction. h

Next, we want to add a lower-order term, that is a 6¼ 0 in (1), and still recover the same accuracy result. We
need the following lemma.

Lemma 2.7. If A is an invertible matrix and E a matrix, then A + E will be invertible if q(A�1E) < 1, where q(Æ)
denotes the spectral radius (i.e. the magnitude of the largest eigenvalue), and ðAþ EÞ�1 ¼ A�1�P1

k¼1ð�1Þkþ1ðA�1EÞkA�1.

Proof. See [6]. h

The main difference compared to the purely parabolic case is that ~M will not be a constant matrix but
rather, ~M ¼ Aþ Bh, where A,B are constant matrices. A results from the discretisation of the second deriva-
tives and B from first derivatives. These perturbations follows through the whole proof such that the elements
of M r � Oð1þ hÞ and hence jl � Oð1þ hÞ, and we end up with Eq. (12) where, R ¼ ð~s�j� ~M rjÞ � Oð1þ hÞ.
The same reasoning applies and we conclude that also in this case R can be reduced to a square nonsingular
matrix. By Lemma 2.7 the inverse would be of order 1 + h and the desired size of r is obtained. This result is
stated in the following theorem.

Theorem 2.8. If (2) is a pointwise stable discretisation of (1) for h 6 h0, then with the order of accuracy

r = 2p � 2 at the boundary, the global order of accuracy of the approximation (2) is 2p.

Remark. The truncation errors, Tb, include errors from all terms. That means that it is allowed for the hyper-
bolic terms to be two orders less accurate at the boundary as long as parabolic terms are present.

Note that Eq. (7) can be written as ð~sI � ~MÞêb ¼ h2 ~T b, and that Theorem 2.8 implies that ð~sI � ~MÞ�1 exists
and is of order 1. In [5] the following definition is introduced which we will need below.

Definition 2.9. If detð~sI � ~MÞ 6¼ 0 for Re~s P 0, then ð~sI � ~MÞ�1 exists and we say that the determinant
condition is satisfied.
2.2. Incompletely parabolic systems

An incompletely parabolic system consists of coupled hyperbolic and parabolic equations. We begin by
considering the discretisation,
vt þ a11D11v ¼ B; a11 > 0; vð0Þ ¼ f ð13Þ

of the hyperbolic equation,
ut þ a11ux ¼ F ðx; tÞ; 0 6 x <1;
uð0; tÞ ¼ gðtÞ; uðx; 0Þ ¼ f ðxÞ;

ð14Þ
where B holds the boundary data and forcing function. Suppose that the determinant condition for (13) holds,
such that, for some constant d > 0,
jð~sI þ a11
eD11Þ�1j > d; Re~s P 0. ð15Þ
The tilde denotes the undivided difference such that hD11 ¼ eD11.
Consider the following incompletely parabolic system,
uð1Þ

uð2Þ

 !
t

þ
a11 a12

a21 a22

� �
uð1Þ

uð2Þ

 !
x

¼
0

�uð2Þ

� �
xx

; x P 0; t P 0; ð16Þ
with boundary and initial conditions L0(t)u = g0(t), u(x,0) = f(x), where u = (u(1),u(2))T. Let Eq. (16) be
discretised by,
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vð1Þ

vð2Þ

 !
t

þ
a11D11 a12D12

a21D21 a22D22 � �D2

� �
vð1Þ

vð2Þ

 !
¼ Bð1Þ

Bð2Þ

 !
; ð17Þ
where B(1) and B(2) are vectors that introduce the boundary data. Further, v(1) and v(2) are the discrete solution
vectors. With the splitting of the error e = ei + eb and the truncation error T = Ti + Tb we obtain for eb,
eð1Þb

eð2Þb

 !
t

þ
a11D11 a12D12

a21D21 a22D22 � �D2

� �
eð1Þb

eð2Þb

 !
¼

T ð1Þb

T ð2Þb

 !
; ð18Þ
where T ð1Þb ¼ Oðhr; 0Þ and T ð2Þb ¼ Oðhq; 0Þ.

Remark. Note that D11,D12,D21 and D22 are not necessarily pure first derivative approximations but can
include terms from the boundary treatment. The same is true for D2 which is mainly an approximation of the
second derivative.

Below, we state and prove a theorem based on the following conditions.

Condition 2.10. Assume that the discretisation (17) of (16) is pointwise stable.

Condition 2.11. Assume that the discretisation (17) of (16) is stable and, with a11 = a12 = a21 = a22 = 0, fulfils
Theorem 2.8.

Theorem 2.12. Assume that the discretisation (13) of (14) satisfies the determinant condition (15). If either

Condition 2.10 or Condition 2.11 is satisfied and, D11 and D12 are approximated with order of accuracy

r = 2p � 1 at the boundary, whereas D21,D22 and D2 are approximated with order of accuracy q = 2p � 2, then

(17) is of order 2p.

Proof. Laplace transform (18) to obtain,
sI þ a11D11 a12D12

a21D21 sI þ a22D22 � �D22

� �
êð1Þb

êð2Þb

 !
¼

~T ð1Þb

~T ð2Þb

 !
; ð19Þ
or,
Aê ¼ ~T b; Re~s P 0. ð20Þ
Rotate Eq. (20) to,
BARR�1ê ¼ B~T b; R ¼
I a

0 I

� �
; B ¼

I 0

b I

� �
. ð21Þ
To make BAR block diagonal we choose a ¼ �hð~sI þ a11
eD11Þ�1a12D12 ¼ �ð~sI þ a11

eD11Þ�1a12
eD12 and b ¼ �

ð~sI þ a11
eD11Þ�1a21

eD21. By assumption, ð~sI þ a11
eD11Þ�1 exists. Thus, a and b are of order 1. The matrices R

and B are both non-singular justifying the transformation. Further, BT b ¼ ð~T ð1Þb ; ~T ð2Þ0b Þ
T, where ~T ð2Þ0b ¼

~T ð2Þb þ b~T ð1Þb . Note that B~T b is of the same size as Tb. Furthermore, R�1êb ¼ ðêð1Þb � aêð2Þb ; êð2Þb Þ
T ¼

ðêð1Þ0b ; êð2Þb Þ
T ¼ ê0b. Multiply Eq. (21) by diag(hI,h2I) to obtain,
ð~sI þ a11
eD11Þ 0

0 ha21
eD21aþ e~sI þ ha22

eD22 � �eD2

 !
ê0b ¼

h~T ð1Þb

h2 ~T ð2Þ0b

 !
. ð22Þ
The upper left block is invertible by assumption (15), yielding that êð1Þ0b is order r + 1.
The lower left is e~sI � �eD2 þ OðhÞ. Two different approaches may be considered for this term. We can use

Condition 2.11 that the purely parabolic equation is uniquely determined such that the inverse of ðe~sI � �eD2Þ
exists. Then detððe~sI � �eD2ÞÞP const > 0 for e~s P 0. By Lemma 2.7, if h is small enough the perturbation does
not make the matrix singular. Or, we use Condition 2.10 that the incomplete parabolic system is pointwise
stable in which case the inverse must exist by uniqueness of the numerical as well as the mathematical solution.
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Either of the two assumptions leads to a solution êð2Þb of order q + 2. Solving for êb yields,

êb ¼ Rê0b ¼ ðê
ð1Þ0
b þ aêð2Þb ; êð2Þb Þ

T. We conclude that êð1Þb � maxðOðhrþ1Þ;Oðhqþ2ÞÞ and êð2Þb � Oðhqþ2Þ. Inverting

the Laplace transform yield the same order of magnitude to eð1Þb and eð2Þb , respectively.
Finally, we consider ei. With Condition 2.10, (17) is pointwise stable and with Condition 2.11, (17) is stable.

Hence, an estimate analogous to (6) is obtained in both cases. h
2.3. The wave equation

Consider a 2nd-order hyperbolic partial differential equation such as the wave equation.
utt ¼ uxx; 0 6 x 61; 0 6 t 6 T ;

L0ðtÞu ¼ g1ðtÞ; at x ¼ 0; uðx; 0Þ ¼ f ðxÞ.
ð23Þ
We assume that (23) is supplied with boundary conditions such that it is well-posed. A semi-discretisation of
(23) can be written,
vtt ¼ Mvþ B; vð0Þ ¼ f ; ð24Þ

where B includes the boundary data. We assume that the order of accuracy is 2p for the interior scheme and r

at a finite number of boundary points (as h! 0). Let e1 denote the error in v and e2 the error in vt, such that
(e1)t = e2. Write the error equation corresponding to (24) as a system of equations and Laplace transform,
s
ê1

ê2

� �
¼

0 I

M 0

� �
ê1

ê2

� �
þ ~T ; ð25Þ
where ~T ¼ ð0; ~T 2ÞT is the truncation error and I the identity matrix. We state the following theorem.

Theorem 2.13. If v and vt are pointwise stable discrete solutions to (24), then with r = 2p � 2 the global order of

accuracy is 2p.

Proof. The proof of Theorem 2.6 applies directly to the system (25). h
2.4. A general statement

Consider the advection–diffusion equation, ut + aux = �uxx. The above theory shows that pointwise stabil-
ity of a scheme approximating the equation is sufficient to obtain global order of accuracy 2p with local order
of accuracy r = 2p � 2 at the boundary. A key part in the proof is the multiplication of the truncation error by
h2 in (7).

On the other hand, with � = 0 and the assumption of a pointwise stable scheme, we could use the same
proof but this time only multiplying the boundary error by h in (7). Then, the components of ~M are Oð1Þ
and ~s ¼ sh. That is just proving that we can lower the accuracy at the boundary by one order for hyperbolic
equations, i.e. what is proven in [1,2]. We have also shown above that lower-order terms will not affect the
resulting accuracy (as long as they do not destroy well-posedness).

The above reasoning justifies the study of the following equation,
ut ¼ a
omu
oxm

; 0 6 x <1; L0u ¼ gðtÞ; uðx; 0Þ ¼ f ðxÞ ð26Þ
since lower-order terms will not affect the order at the boundary. For well-posedness of (26) we require that
a = (�1)p/2 + 1 if p is even and a = 1 otherwise. A semi-discretisation would be,
vt ¼ Mhvþ B; vð0Þ ¼ f . ð27Þ
As before, we assume that the discrete scheme is pointwise stable. Again we study the error equation, et =
Mhe + Th, e(0) = 0 and split the error into two parts, internal and boundary (ei,eb,Ti,Tb). The internal error
directly yields the correct order. The boundary part is Laplace transformed and viewed as a homogeneous
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difference equation with initial data. In order to obtain Oð1Þ coefficients in M we need to multiply the error
equation (corresponding to (7)) by hm. With these observations the proof of the following theorem is identical
to the previous proof of Theorem 2.6.

Theorem 2.14. Assume that (26) is well-posed and its semi-discretisation (27) is pointwise stable. Then with the

order of accuracy p in the interior and order p � m at the boundary closure, the global order of accuracy is p.
3. Analysis of SBP schemes

The conditions in Theorems 2.8, 2.12 and 2.13 are quite general and we will devote this chapter to derive
pointwise stability for SBP schemes with SAT implementation of boundary conditions. SBP schemes in com-
bination with the SAT technique for boundary conditions, are designed to yield energy estimates and using
those estimates we will prove pointwise stability. (For theory of SBP-SAT schemes, see [7–16,4].)

3.1. The heat equation

3.1.1. The continuous problem

To show how pointwise bounds on the solution can be obtained, we begin by deriving an energy estimate
for the heat equation,
ut ¼ uxx; 0 6 x 6 1; L1u ¼ g1ðtÞ; L0u ¼ 0; ð28Þ
where L1u = u(1, t) + aux(1, t),a > 0 and L0u = ux(0, t) and (28) is assumed to have bounded initial data. The
energy method applied to (28) leads to
1

2
kuk2

t þ
Z

u2
x dx ¼ ½uux�10 6 �ð1� gÞ juð1; tÞj

2

a
þ 1

g
jg1ðtÞj

2

a
; ð29Þ
where kuk2 ¼
R 1

0
u2 dx and 0 < g 6 1. and well-posedness follows. Note also that iux(Æ, t)i is bounded. Then

u can be pointwise estimated by a Sobolev inequality. For any point x1 2 [0,1] and every � > 0 we have,
ju(x1)j 6 �iuxi2 + (��1 + 1)i ui2.

3.1.2. The semi-discrete problem
In order to discretise (28), an approximation of the second derivative is needed. Such approximations in the

SBP-framework are derived in [4] for different orders of accuracy, see also [11]. For any order, those can be
expressed as,
D2 ¼ P�1ð�Aþ BSÞ. ð30Þ
In (30), P is an l2-equivalent norm, that is P is symmetric and positive definite and vTPv ¼ kvk2
P . Further,

A + AT P 0; B = diag(�1,0 . . . ,0, 1) and S is a matrix approximating the first derivative at the boundaries.
We will also need the following, e0 = (1,0, . . ., 0)T,E0 = diag(1,0, . . ., 0), eN = (0, . . ., 0,1)T,EN = diag-
(0, . . ., 0,1). Further, we will frequently use the notation (w)i to denote the ith component of some vector w.
Discretise Eq. (28) with N + 1 grid points and denote the solution vector v. The operator (30) together with
an SAT treatment for the boundary conditions lead to
vt ¼ P�1ð�Aþ BSÞvþ r1P�1LD
1 ðv; g1Þ þ r0P�1LD

0 v; ð31Þ

where LD

1 ðv; g1Þ ¼ ðEN ðI þ aBSÞv� eN g1ðtÞÞ, LD
0 v ¼ E0BSv and I denotes the identity matrix. The parameters r0

and r1 will be determined with respect to stability. The initial data is the vector f, i.e. the function f(x) pro-
jected onto the grid. Next, we multiply (31) by vTP and add the result to its transpose. We obtain, with
r0 = 1 and r1 = �1/a,
ðkvk2
P Þt þ vTðAþ ATÞv ¼ �2

a
vN ðvN � g1ðtÞÞ; ð32Þ
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i.e. the discrete counterpart of (29). We conclude that the term vT(A + AT)v will be bounded and is the discrete
analogue of iuxi2 in (29).

The following properties of the SBP operators can be shown to hold and we state those without a proof in
an assumption.

Assumption 3.1. The matrix A, in the diagonal norm schemes we consider, is symmetric and the row sums are
zero. Further, if A is an n · n-matrix then rank(A) = n � 1.

Remark. The rank of A in Assumption 3.1 can be checked for some n. Then A is extended in the interior by
the difference stencil which is linearly independent to the rest of the matrix. Hence, the rank does not change
as n increases.

Lemma 3.2. Let A be defined above and satisfy Assumption 3.1, c1 a positive constant and C a function depend-

ing only on data (f,g and F, denoting initial data, boundary data and forcing function respectively). Then, any

scheme with an estimate
kvk2
P þ c1vTðAþ ATÞv < Cðf ; g; F Þ ð33Þ
is pointwise stable.

Proof. In [5] the following discrete Sobolev inequality is proved. An � > 0 exists such that, jvij2 6 kvk2þ
�kDþvk2

2, i = 1,. . .,N where kvk2
2 ¼ h

PN
1 jvij2, (D+v)i = (vi � vi� 1)/h.

Since A is symmetric we obtain from Eq. (33), 0 6 vTeAv 6 ch, where eA ¼ hA and c = C(f,g,F)h/(2c1). Note
that, all eAij are of order 1. We will need a few properties of eA. For the diagonal norm case eA is symmetric and
the row sums are zero. Then,
ch P
Xn

i¼1

Xn

j¼1

vi
eAijvj ¼

Xn

i¼1

vi
eAiivi þ

X
j 6¼i

eAijvj

 !
¼
Xn

i¼1

vi �
X
j 6¼i

eAij

 !
vi þ

X
j 6¼i

eAijvj

 !

¼
Xn

i¼1

vi

X
j 6¼i

eAijðvj � viÞ
 !

P 0.
Since eA is symmetric this can be rewritten as,
Xn

i¼1

vi

X
j 6¼i

eAijðvj � viÞ
 !

¼
Xn

i¼2

X
i<j

ðvi � vjÞ2ð�eAijÞ.
Next, consider, (vi � vj)
2 = ((vi � vi� 1) + (vi�1 � vi� 2) +� � �+ (vj + 1 � vj))

2. From this observation we
conclude that, vTeAv ¼ vTDTBDv, where B is an (n � 1 · n � 1)-matrix and D is the (n � 1) · n matrix in
(34). The crucial part is to prove that B is positive definite. Extend B by a top row and left column of
zeros such that it becomes an n · n-matrix denoted by eB. Further, let eD be the non-singular n · n-matrix
in (34).
eD ¼
1 0 . . .

�1 1 0 . . .

0 �1 1 0 . . .

. .
. . .

.

0 �1 1

0BBBBBB@

1CCCCCCA; D ¼

�1 1 0 . . .

0 �1 1 0 . . .

. .
. . .

.

0 �1 1

0BBBB@
1CCCCA. ð34Þ
We obtain vTAv ¼ vT eDTeB eDv. Since eD is non-singular eB and A have the same rank, i.e. rankðeBÞ ¼
rankðAÞ ¼ n� 1. Also, since B was extended by zeros, B itself must be non-singular, i.e. positive definite. Then
0 < vTDTDv 6 c 0h. Hence, the discrete Sobolev inequality applies and we conclude that v is pointwise
bounded. h
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Remark. In the example above the estimate is bounded by, C(f,g1,F), i.e. we have a bound for non-homoge-
neous boundary data. Hence, the proof shows strong pointwise stability. In general, it might be easier to prove
an energy estimate with g1 = 0 in which case the above proof concerns pointwise stability.

Proposition 3.3. With r0 = 1 and r1 = �1/a, the discretisation (31) of (28) leads to strong pointwise stability.

Then with internal order 2p and order r = 2p � 2 at the boundary, the global order of accuracy is 2p.

Proof. Eq. (31) with r0 = 1 and r1 = �1/a leads to boundedness of vT(A + AT)v. Then by Lemma 3.2, (31) is
(strongly) pointwise stable. Hence, the proposition follows from Theorem 2.8. h

Remark. Note that, applying an SBP first derivative twice yields a non-compact second derivative in the inte-
rior. However, this does not affect the proof since the resulting A matrix has the same properties as those
derived in [4] and stated in Assumption 3.1.

Remark. In an SBP-SAT scheme the penalty term is scaled by 1/h. Hence, if a pth-order global accuracy
allows mth-order boundary closure it follows trivially from the proofs in Section 2 that the boundary condi-
tions need to approximated to m + 1th order of accuracy.
3.2. The advection–diffusion equation

Consider,
ut þ aux ¼ �uxx þ F ðx; tÞ; 0 6 x 6 1; t P t0;

L0u ¼ g0ðtÞ; L1u ¼ g1ðtÞ; uðx; t0Þ ¼ f ðxÞ;
ð35Þ
where L0u = u(0, t) + aux(0, t) and L1u = u(1, t) + bux(1, t). Assume that a > 0, then Eq. (35) can be proven
well-posed with the energy method if,
� 2�

a
6 a 6 0; b 6 � 2�

a
; b > 0. ð36Þ
From the previous subsection, we have the tools to prove pointwise stability by deriving an energy estimate.
Eq. (35) is discretised as,
vt þ aP�1Qv ¼ �P�1ð�Aþ BSÞv� P�1r0LD
0 v� P�1r1LD

1 ;

vð0Þ ¼ f ;
ð37Þ
where LD
0 v ¼ ðE0ðI � aBSÞv� e0g0ðtÞÞ and LD

1 v ¼ ðEN ðI þ bBSÞv� eN g1ðtÞÞ and I denotes the identity matrix.
The first derivative approximation operator P�1Q satisfies the following relation, Q + QT = B, where

B = diag(�1,0, . . ., 0,1). Next, the energy method is applied by multiplying Eq. (37) by vTP and adding the
result to its transpose.

An energy estimate is obtained if r0 = �/a, r1 = � �/b and (36) hold. We have,
d

dt
ðvTPvÞ þ avTBv ¼ ��vTðAþ ATÞvþ 2

�

a
v0ðv0 � g0ðtÞÞ � 2

�

b
vN ðvN � g1ðtÞÞ. ð38Þ
Condition (36) ensures that the boundary terms are bounded such that the desired estimate of the semi-
discrete initial-boundary value problem is obtained. Denoting the boundary terms by BT, (38) becomes
d
dtðvTPvÞ þ BT ¼ ��vTðAþ ATÞv. Omitting the integration in time we conclude, using Lemma 3.2, that v is
strongly pointwise bounded. Since the requirement of Theorem 2.8 is fulfilled, we have proved the following
theorem.

Proposition 3.4. With r0 = � �/b0 and r1 = �/b1 and (36), the discretisation (37) of (35) with internal order of

accuracy 2p and boundary accuracy r has global accuracy min(2p, r + 2).
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We have justified that for these SBP schemes two orders less accuracy at the boundary does not reduce the
global accuracy of the scheme Note also that in the case with parabolic terms we can also reduce the accuracy
of the hyperbolic terms two orders at the boundary.

3.3. An incompletely parabolic system

3.3.1. The continuous problem

We proceed by considering one example of an incompletely parabolic system of equations and test the con-
ditions in Theorem 2.12.
~ut þ A~ux ¼ �C~uxx;

~uð1Þð0Þ ¼ gð1ÞðtÞ; ~uð2Þð0Þ ¼ gð2ÞðtÞ; ~uð2Þx ð1Þ ¼ gð3ÞðtÞ;
ð39Þ
where ũ = (ũ(1), ũ(2))T. A is a symmetric positive definite (2 · 2)-matrix such that [A]ij = aij, C = diag(0,1) and
� > 0. We define the norm k~uk2 ¼

P1
i¼0

R 1

0 ð~uðiÞÞ
2 dx and apply the energy method,
1

2
k~uk2

t þ
1

2
~uTA~uj10 � ~uð2Þ~uð2Þx j

1
0 ¼ ��

Z 1

0

ð~uð2Þx Þ
2 dx.
Imposing the boundary conditions, and for simplicity assuming that g(2) = g(3) = 0, yields
1

2
k~uk2

t þ
1

2
~uTð1ÞA~uð1Þ þ �

Z 1

0

ð~uð2Þx Þ
2 dx ¼ 1

2
gð1Þa11gð1Þ.
Thus the problem (39) is well-posed.

3.3.2. The semi-discrete problem

To analyse systems of partial differential equations it is convenient to introduce the Kronecker product,
A� B ¼

a0;0B . . . a0;q�1B

..

. ..
.

ap�1;0B . . . ap�1;q�1B

0BB@
1CCA; ð40Þ
where A is a (p · q) matrix and B an m · n matrix. The Kronecker product satisfies the following rules:
(A � B)(C � D) = (AC) � (BD) and (A � B)T = AT � BT.

We proceed by constructing a semi-discretisation of (39) with N + 1 grid points. Let vð1Þi and vð2Þi denote the

approximation of u(1)(xi) and u(2)(xi). Further, let vi ¼ ðvð1Þi ; vð2Þi Þ
T and v = (v0,v1, . . ., vN)T. Finally, we will

need, v
ð1Þ
0 ¼ ðv

ð1Þ
0 ; 0; . . . ÞT; vð2Þ0 ¼ ð0; v

ð2Þ
0 ; 0; . . . ÞT; vð2ÞN ¼ ð. . . ; 0; vð2ÞN Þ

T and Eð2ÞN such that Eð2ÞN v ¼ v
ð2Þ
N .

The basic scheme approximating (39), without boundary conditions, is,
vt þ ðP�1Q� AÞv ¼ ðP�1ð�Aþ BSÞ � �CÞv. ð41Þ

To determine the structure of the penalty terms the energy method is applied to (41) by multiplying vT(P � I),
where I is the (2 · 2) identity matrix, and adding the transpose.

The resulting boundary terms determines the form of the penalties and the full SBP-SAT scheme approx-
imating (39) becomes,
vt þ ðP�1Q� AÞv ¼ ðP�1ð�Aþ BSÞ � �CÞvþ r0ðP�1 � AÞðvð1Þ0 � G1Þ þ r1ðP�1ðBSÞT � �CÞðvð2Þ0 � G2Þ
þ r2ðP�1 � �CÞðEð2ÞN ðBS � IÞv� G3Þ; ð42Þ
where G1 = (g(1), 0 , . . .), G2 = (0, g(2), 0 , . . .) and G3 = (0, . . ., 0,g(3)). For simplicity, we assume that
g(2) = g(3) = 0.

We use kvk2
M ¼ vTðP � IÞv to denote the norm. With r0 6 �1/2 and r1 = r2 = �1/2 we have,
ðkvk2
MÞt þ vT

N AvN þ vTððAþ ATÞ � �CÞv ¼ ð1þ 2r0Þa11v2
0 � 2r0vð1Þ0 a11gð1Þ. ð43Þ
If r0 = �1/2 in (43) we obtain exactly the same estimate as in the continuous case.



344 M. Svärd, J. Nordström / Journal of Computational Physics 218 (2006) 333–352
In the previous subsection, we proved the heat equation to be pointwise stable, which is a requirement for
Theorem 2.12 to apply. It remains to show that the hyperbolic part satisfies the determinant condition. The
hyperbolic part of the scheme is in general of the form,
vt þ P�1Qv ¼ r0P�1E0ðv0 � gðtÞÞ. ð44Þ

(In the specific example above g(t) = 0, but that is not necessary.) For a hyperbolic equation it is not sufficient
that the scheme is strongly stable for it to be pointwise stable (which is equivalent to the determinant
condition).

We begin by considering dissipative schemes and restrict ourselves to schemes where P is diagonal. Then
P�1Q is replaced by,
P�1ðQþ RÞ. ð45Þ

In [14] dissipation operators that do not destroy the SBP-property are derived, such that R ¼ cheDT

p BeDp whereeDp=hp is a 1st-order accurate approximation of the pth space derivative, c > 0 is a parameter and B a positive
definite matrix. If p is chosen such that 2p is the order of the scheme this dissipation operator will keep the
order of accuracy without widening the stencil. In order to prove pointwise stability we must choose c � 1/h.
Then the accuracy is lowered one order or we must choose a larger p, i.e. widening the stencil. We can prove
the following proposition.

Proposition 3.5. The scheme (44), discretised with a dissipative SBP operator (45), satisfies the determinant

condition (15), i.e. it is pointwise stable.

Proof. See Appendix A. h

For a central difference scheme we can not use the energy method to prove pointwise stability. Hence, we
have to turn to the Laplace transform technique (see [5] for a thorough presentation of the theory). For this
reason we have to prove that the determinant condition is satisfied for each particular type of scheme and
order of accuracy. However, the Laplace transform technique becomes increasingly difficult to apply for
higher-order schemes. We state the following conjecture and give some justification.

Conjecture 3.6. The scheme (44), discretised using a central difference SBP scheme, satisfies the determinant
condition, i.e. it is pointwise stable.

A proof that the conjecture is true in the 2nd-order case is included in [17] along with analysis indicating the
truth of the conjecture for an internally 4th-order scheme. For higher-order methods than four, we refer to
computations where the measured global order of accuracy can be explained if the conjecture is true.

We conclude that the requirements of Theorem 2.12 may be fulfilled and summarise the results in a
proposition.

Proposition 3.7. If either Proposition 3.5 or Conjecture 3.6 holds, then with r0 = �1 and r1 = r2 = �1/2 the
discretisation (42) of (39) with internal order of accuracy 2p and boundary accuracy r for the parabolic and r + 1

for the hyperbolic equation has global order of accuracy min(r + 2,2p).

This is just one example of an incompletely parabolic system that we use to show the techniques to prove
the conditions of Theorem 2.12. However, for any well-posed incompletely parabolic system, discretised with
an SBP and SAT scheme that satisfy a discrete energy estimate, those conditions will be fulfilled.

3.4. The wave equation

Consider (23) with homogeneous Dirichlet boundary conditions. In the SBP-setting we discretise by,
vtt ¼ P�1ð�Aþ DSÞvþ r0P�1E0Sðv� 0Þ þ r1P�1EN Sðv� 0Þ. ð46Þ

In this case A has to be symmetric which the energy method will reveal below. Applying the energy method to
(46) yields,
ðkvtk2
P þ vTAvÞt ¼ �2ð1� r0ÞðvtÞ0ðSvÞ0 þ 2ð1þ r1ÞðvtÞN ðSvÞN . ð47Þ
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Note that without symmetry of A it would not be possible to obtain the total derivative (vTAv)t. With
r0 = 1 and r1 = �1 stability follows. In this case we do not directly have a bound on ivi and vTAv. However,
with ifi 61 we can solve the ordinary differential equation (47) to bound ivti and vTAv. Since the norm of
v(0) and i vti is bounded it follows that ivi has to be bounded. Then we can estimate the solution v, pointwise
using Lemma 3.2. We make the plausible assumption that vt is pointwise bounded such that Theorem 2.13
applies. We summarise the results in a proposition.

Proposition 3.8. With r0 = 1, r1 = �1, the discretisation (46) of (23) yields a pointwise bound on v. With the

assumption that vt is pointwise bounded the global order of accuracy is min(2p, r + 2), where r is the boundary and
2p the internal order of accuracy.
4. Computations

In [4] extensive computations on the advection–diffusion and incompletely parabolic equations were per-
formed with SBP-schemes. We will not redo the calculations for the advection–diffusion but only give their
results. We will omit computations for the heat equation, since it is a special case of the advection–diffusion
equation. We present novel results for the wave equation and a simple 4th-order equation. We will also test the
validity of the linear theory for the nonlinear viscous Burgers’ equation and the two-dimensional compressible
Navier–Stokes equations.

Throughout this section we will consider approximations of the second derivatives derived in [4]. Also, first
derivative approximations are used. Those were originally derived in [7,8] and given as exact expressions in [9].
We distinguish between two types of operators. Those with a diagonal norm, i.e. P is diagonal, and those with
a block norm where P is diagonal except at the upper-left and lower-right corners where blocks are situated. In
[7,8] it was proven that diagonal norm schemes can only have half the internal accuracy at the boundary.

In all the computations, we use the classical Runge–Kutta scheme in time except for the Navier–Stokes
equations where we use a 4th-order five-stage low-storage, explicit Runge–Kutta method derived in [18].

4.1. Equations with first derivative in time

The contents of this subsection was originally presented in [4] and we briefly quote some of their compu-
tational results.

4.1.1. The advection–diffusion equation

Consider Eq. (1) discretised by (37). The Cauchy problem have the solution,
u ¼ sinðxðx� ctÞÞe�bx; c > 0; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � a2
p

2�
; b ¼ c� a

2�
; jcj > jaj. ð48Þ
The computational domain is 0 < x < 1 and (48) is used both as initial and boundary conditions. Further,

a = 1, c = 2 and � = 0.1 have been used. The convergence rate is calculated as, q ¼ logðku�vh1 kh

ku�vh2 kh
Þ= logðh1

h2
Þ, where

u is the analytical solution and vh1 is the corresponding numerical solution with grid size h1. Further, ku� vh1kh

is the l2-error.
In [4] results are presented for schemes with both 4th- and 6th-order internal accuracy. The results agree

with the theory and we choose only to quote the results for a 4th-order diagonal norm scheme, Table 1. Note
that with a diagonal norm an internally 4th-order accurate scheme can be approximated to maximally
2nd-order at the boundary. However, using the theory in this paper shows that the scheme is globally 4th
order

Two different cases are shown:

1. Theoretically strongly stable scheme. Hence, also pointwise stable.
2. The theoretical estimates are violated by altering the penalty parameter. Hence, the scheme is not pointwise

stable. However, the computations are stable in the sense that the eigenvalues are located in the left half-
plane. This case is marked with superscript v.



Table 1
SBP-scheme for the advection–diffusion equation with 4th-order internal accuracy and 2nd-order boundary closure. The two right
columns are results for scheme with stability estimates violated

N log(l2 � error) q logðl2
v � errorÞ qv

40 �4.25 �2.59
60 �5.02 4.30 �3.13 3.01

100 �5.98 4.25 �3.81 3.01
200 �7.24 4.17 �4.72 3.01
300 �7.97 4.11 �5.25 3.00
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Notable is that if the penalty parameter is chosen such that the scheme is not energy stable (though the
computations are not unstable), the global order of accuracy is reduced by 1 indicating that the conditions
in Theorem 2.8 are not only necessary but also sufficient. From the present article this is justified since the
scheme is not pointwise stable.

Finally, if � = 0 in the above computations, i.e. we have a hyperbolic equation, the accuracy drops to 3rd-
order in full agreement with the results in [1,2].

4.1.2. An incompletely parabolic system

The system (39) was considered in [4] with,
Table
SBP-sc
deriva

N

30
60
90

120
150
u ¼ uð1Þ

uð2Þ

 !
; C ¼

1 1

1 �1

� �
; D ¼

0 0

0 �

� �
. ð49Þ
The system is transformed such that the hyperbolic part is diagonal and provided with well-posed boundary
conditions. The system is discretised using SBP and SAT technique such that the scheme is strongly stable.

We will discuss the results from two test cases:

1. An internally 4th-order accurate block-norm scheme (see [4, Appendix D1]). The second derivatives are
approximated to 2nd-order accuracy at the boundary and the first derivatives to 3rd-order accuracy.

2. An internally 4th-order accurate diagonal-norm scheme (see [4, Appendix C2]). Both the first and second
derivatives are approximated to 2nd-order accuracy at the boundary.

In Table 2 the results of test case 1 are displayed. Also in this case, orders of accuracy to the problem with a
non-energy stable choice of the penalty parameter are presented. This reduces the global order of accuracy by
one. This indicates that the conditions of Theorem 2.12 are both necessary and sufficient.

Next, we turn to test case 2. The results are shown in Table 3. As expected the scheme is only 3rd-order
accurate. All the hyperbolic terms are discretised with 2nd-order boundary closure but Theorem 2.12 requires
the hyperbolic equation in the system to have a boundary closure of only one order less than the internal
scheme. Hence, the violation of the energy estimates does not affect the accuracy either, as long as the scheme
remains stable in the numerical computations.

Note that, since 4th-order accuracy is recovered in Table 2, the Conjecture 3.6 seems to be true. The hyper-
bolic part need to be pointwise stable for Theorem 2.12 to be true.
2
heme for the incompletely parabolic system with 4th-order internal accuracy and 2nd-order boundary closure for the second

tive and 3rd-order for the first derivative. The two right columns are results for scheme with stability estimates violated

log(l2 � error) q logðl2
v � errorÞ qv

�3.31 �3.26
�4.52 3.91 �4.25 3.24
�5.23 4.00 �4.81 3.10
�5.74 4.03 �5.19 3.05
�6.13 4.03 �5.48 3.03



Table 3
SBP-scheme for the incompletely parabolic system with 4th-order internal accuracy and 2nd-order boundary closure for both first and
second derivative. The two right columns are results for scheme with stability estimates violated

N log(l2 � error) q logðl2
v � errorÞ qv

30 �2.59 �2.60
60 �3.61 3.33 �3.55 3.10
90 �4.18 3.19 �4.10 3.05

120 �4.58 3.13 �4.48 3.05
150 �4.88 3.11 �4.78 3.04
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4.2. The wave equation

Using the scheme (46) we have computed convergence rates to corroborate Theorem 2.13. (In (46) it is
assumed that the boundary data is zero. This is sufficient for Theorem 2.13 to hold. However, in the case
below, it is possible to show strong stability which allows less smoothness in the data.)

We have considered the following wave equation, utt = c2uxx, on 0 6 x 6 p, 0 6 t 6 0.5 with c = 2. We use
Neumann boundary conditions and initial conditions derived from the exact solution uðx; tÞ ¼ 1

2
ðsinðx� ctÞþ

sinðxþ ctÞÞ. The l2-error and convergence rate are computed at t = 0.5. The results are shown in Table 4. In
Table 4 there are no data for the scheme with the energy estimate violated. This is due to the scheme being
unstable for r0 6¼ 1 or r1 6¼ �1. Further, we note that 4th-order accuracy is achieved in accordance with
the theory.

4.3. The biharmonic operator

Consider,
Table
SBP-sc

N

10
20
40
80

160
ut ¼ �uxxxx; 0 6 x 6 L; t P 0;

uxxð0Þ ¼ g1ðtÞ; uxxðLÞ ¼ g2ðtÞ; uð0Þ ¼ g3ðtÞ; uðLÞ ¼ g4ðtÞ.
ð50Þ
With the energy method it is easily shown that (50) is well-posed. u = sin(x)e�t is a solution to the Cauchy
problem and by choosing g1,2,3,4 accordingly we have an exact solution to (50). The equation is discretised
by, ut = � D4u + penalty, where D4 = D1 Æ D1 Æ D1 Æ D1 and D1 = P�1Q is an SBP operator with 6th-order
internal accuracy and 3rd-order boundary accuracy. Hence, D4 is 0th-order at the boundary and 6th-order
in the interior. Further,
penalty ¼ P�1ðr1DT
1 E0ðD2u� g1Þ þ r2DT

1 EN ðD2u� g2Þ þ r3DT
3 E0ðu� g3Þ þ r4DT

3 EN ðu� g4ÞÞ;

where r1 = 1, r2 = �1, r3 = �1 and r4 = 1 lead to stability. The first two penalty terms are 1st-order imple-
mentation of the boundary condition multiplied by P�1 which leads to 0th-order truncation error at the
boundary. The second two terms does not have a truncation error. Altogether, we have a globally 4th-order
accurate scheme when Theorem 2.14 has been applied. (We omit the proof of pointwise stability since it is
similar to all the previous.)

The results of computations with the scheme above is shown in Table 5. We choose L = 3p/4 to obtain non-
zero boundary data and the final time is t = 0.01 in order not to introduce a large temporal error. We see that
the convergence is 4th-order as predicted by theory.
4
heme for the wave equation with 4th-order internal accuracy and 2nd-order boundary closure

log(l2 � error) q

�1.09
�5.23 5.97
�8.59 4.84
�11.27 3.87
�14.07 4.04



Table 5
SBP-scheme for biharmonic equation with 6th-order internal accuracy and 0th-order boundary closure

N log(l2 � error) q

20 �8.93
30 �10.63 4.0295
40 �11.83 4.0391
50 �12.75 4.0362
60 �13.50 4.0321
70 �14.13 4.0285
80 �14.67 4.0255
90 �15.15 4.0230
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4.4. The viscous Burgers’ equation

Consider,
Table
SBP-sc

N

210
230
250
270
290
ut þ uux ¼ �uxx; 0 6 x 6 L; t P t0;

L0u ¼ g0ðtÞ; L1u ¼ g1ðtÞ; uðx; t0Þ ¼ f ðxÞ;
ð51Þ
where L0u = u(0, t) + aux(0, t) and L1u = u(L, t) + bux(L, t). If Eq. (51) is linearised we obtain (35) and from
the linear theory we derive a numerical scheme that is similar to (37). For linear well-posedness we have,
� 2�

uð0Þ 6 a 6 0, b > 0, b 6 � 2�
uðLÞ. Eq. (51) is discretised as,
vt þ P�1Q
v2

2

� �
¼ �D2v� P�1r0LD

0 v� P�1r1LD
1 ; vð0Þ ¼ f ; ð52Þ
where LD
0 v ¼ ðE0ðI � aBSÞv� e0g0ðtÞÞ and LD

1 v ¼ ðEN ðI � bBSÞv� eN g1ðtÞÞ and I denotes the identity matrix.
The computations are done with a constant small time step and 100 iterations. In (51) we choose t0 = 0.16
and L = 0.5. The exact solution to the viscous Burgers’ equation is, uðx; tÞ ¼ �a � tanhðax�ct

2�
Þ þ c,

�1 < x <1, which is used as initial and boundary data with a = 1, c = 2 and � = 0.02. We test two different
cases,

1. D2 = P�1(�A + BS); internally 4th-order accurate; 2nd-order boundary scheme; Su is 3rd-order discretisa-
tion of ux at the boundary points.

2. D2 = P�1Q P�1Q; internally 4th-order accurate; 2nd-order boundary scheme; Su = P�1Qu, i.e. 2nd-order
accurate.

Table 6 displays 4th-order convergence for test case 1 just as in the linear case. Indicating that the linear
theory is applicable in this nonlinear case also. Table 7 displays third order accuracy. This is due to the
2nd-order accuracy of the discretisation of the boundary condition. However, this also indicates that the linear
theory applies. If the boundary closure was not allowed to be 2 orders less accurate, test case 2 would result in
globally 2nd order accuracy.
6
heme for Burgers’ equation with second derivative approximation according to test case 1

log(l2 � error) q

�21.0
�21.4 3.98
�21.7 3.97
�22.0 3.97
�22.3 3.97



Table 7
SBP-scheme for Burgers’ equation with second derivative approximation according to test case 2

N log(l2 � error) q

210 �20.8
230 �21.1 3.47
250 �21.4 3.32
270 �21.6 3.17
290 �21.8 3.02
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4.5. The Navier–Stokes equations

As a final example, we consider the two-dimensional nonlinear compressible Navier–Stokes equations. The
Navier–Stokes equations are an incompletely parabolic system of equations and if linearised, the linear theory
of Sections 2.2 and 3.3 applies. The computational domain is shown in Fig. 1.

Note that it is a 2 block grid. At the interface, it is possible to derive an energy stable coupling for the SBP
scheme (see [11–13]). As a reference solution we use an analytic expression of a viscous shock introduced at
x = 0 and travelling in the x-direction. The flow parameters are, the Mach number M = 1.1, the Reynolds
number Re = 50 and the Prandtl number Pr = 0.75. This gives a very smooth solution, which is necessary
to accurately measure the rate of convergence.

The equations are discretised with three different linearly stable (and linearly pointwise stable) SBP scheme.
The second derivatives are computed by applying the first derivative twice. The orders of accuracy of the dif-
ferent schemes are:

1. 8th-order internal accuracy with 4th/3rd-order boundary closure for the first/second derivatives. Theoretically
5th-order global accuracy.

2. 6th-order internal accuracy with 3rd/2nd-order boundary closure for the first/second derivatives. Theoretically
4th-order global accuracy.

3. 4th-order internal accuracy with 2nd/1st-order boundary closure for the first/second derivatives. Theoretically
3rd-order global accuracy.

The solution is computed on three different grids with 20,40 and 80 points in each direction and block. The
solution on the finest grid computed with the 5th-order method is seen in Fig. 2.
Frame 001 3 Sep 2004 vortex

Fig. 1. The 2 block computational grid.
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Fig. 2. Viscous shock solution on finest grid at T = 1 with the globally 5th-order scheme. The density field.

Table 8
Convergence rates for the Navier–Stokes equations. qi is the convergence rate and ei the l2-error of the ith-order method

N log(e5) q5 log(e4) q4 log(e3) q3

20 �12.3 �12.0 �11.0
40 �15.5 4.63 �14.8 3.4 �13.2 2.97
80 �18.9 4.84 �17.0 4.1 �15.3 3.15
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The l2-errors and convergence rates was measured at T = 0.1 and are displayed in Table 8. The orders of
accuracy are close to their theoretical values and it seems that the theory holds even for the nonlinear Navier–
Stokes equations.

5. Summary and conclusions

The results of this article can be divided into three parts. In the first part we consider partial differential
equations including spatial second derivatives. We show that finite difference discretisations of such equations
can be approximated with two orders less accuracy at the boundary without reducing the global accuracy, if
the scheme is pointwise stable. In particular, it should be noted that this result also applies to 2nd-order hyper-
bolic equations such as the wave equation.

An immediate consequence of this theory is a generalisation to partial differential equations with mth-order
derivatives. With the same stability assumption on the scheme it is possible to lower the order of the boundary
closure m orders of accuracy.

In the second part, it is shown that summation-by-parts operators with either compact second derivatives
or, with the first derivative applied twice, fulfil these requirements. For summation-by-parts operators the task
of proving pointwise boundedness is reduced to derive an energy estimate for the scheme which is considerably
simpler (see [10,7–9,11–16]).

The third part concerns numerical results. In [3,4] the newly developed theory is verified for different
schemes with a first derivative in time. In [4], stable computations with the energy estimate (and hence, the
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pointwise stability), violated, were performed showing that two orders less accuracy is allowed at the bound-
ary. That is in full agreement with the theory developed in this article and indicates that pointwise stability is a
necessary condition.

Further, numerical computations with the wave equation supports the theoretical results showing that the
scheme can be approximated with two orders of accuracy less at the boundary.

As a final observation, consider a first derivative approximation with reduced order at the boundary. The
truncation error at the boundary is increased by one order for each new application of the first derivative oper-
ator to approximate a higher derivative. However, the theory of this article shows that the decreasing order of
accuracy at the boundary is precisely cancelled, resulting in the same global accuracy. To test this in numerical
experiments, we perform computations for a time-dependent 4th-order equation and show that the approxi-
mation can be 0th-order accurate at the boundary.

Finally, we also test the validity of the linear theory on nonlinear equations. Computations show that the
linear theory is applicable both for the viscous Burgers’ equation and the nonlinear compressible Navier–
Stokes equations.

Appendix A. Proof of Proposition 3.5

Throughout this proof, the tilde sign indicates that it is an undivided property, i.e. the components have no
dependence on h. Furthermore, C always denotes a constant, not necessary the same in every expression.

Here we will prove that,
vt þ P�1ðQþ RÞv ¼ r0P�1ðv0 � gðtÞÞ; vð0Þ ¼ f ð53Þ

is pointwise stable. In [14] a numerical dissipation of the form eP �1R ¼ ceP �1 eDT

p BeDp was derived. B is an Oð1Þ
positive definite matrix. With c � 1/h we can prove the theorem, which corresponds to an upwind scheme, i.e.
the order of accuracy drops by one order.

Apply the energy method (53), ðkvk2
P Þt þ vTBvþ vTðRþ RTÞv ¼ 2r0v0ðv0 � gðtÞÞ, Using that v0gðtÞ 6 gv2

0þ
1
gðgðtÞÞ

2, g > 0, we obtain with g < 1 an estimate of kvk2
P in g(t). Thus, the scheme (44) is strongly stable.

Furthermore, vT(R + RT)v < C.
First, we consider boundedness of kvk2

P . The norm i Æ iP is l2 equivalent. Hence,
XN

i¼1

hjvij2 < C; or
XN

i¼1

jvij2 <
C
h

. ð54Þ
We see that jvijmay become infinite as the total number of points N = 1/h!1. However, the total number of
unbounded points n satisfies, n/N! 0 as N!1.

Next, since eDp is a higher-order undivided difference, vT(R + RT)v < C implies,
vTðRþ RTÞv �
XN�r

p

chðeDpvÞ2i )
XN�r

p

ðeDpvÞ2i < C. ð55Þ
The sum goes between the points closest to the boundary such that the difference do not pass over the bound-
ary. (Every point will be ’touched’ by the sum.) Eq. (55) yields directly,
ðeDpvÞ2i < C. ð56Þ

Assume that some jvjj tend to infinity without violating (54). Since only a decreasing fraction of grid points

may become unbounded we can choose vj such that its p closest neighbours are bounded. Consider,
ðeDpvÞ2j ¼ ða0vj þ a1vjþ1 þ � � � þ apvjþpÞ2 !1 as h! 0 which is a violation of (56). Hence, jvij <1 for all i

as N!1.
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